

Modeling, Improving, and Scaling of Lubricating Interfaces in Axial Piston Machines

June 4nd, 2019

Lizhi Shang

Post doctoral research assistant Maha Fluid Power Research Center Purdue University

Swashplate type axial piston machine applications

Introduction

Modeling

Innovation

Scaling Outlook

Outlook and Conclusions

Axial piston pumps and motors

- High operating pressure
- Variable displacement
- High power density
- High efficiency

1000cc

CCEFP Summit in Honor of Monika Ivantysynova – Dr. Lizhi Shang

0.5cc

Videos from Schenk, A. 3

Swashplate type axial piston machine

Maha Fluid Power Purdue RESEARCH CENTER

Challenge of lubricating interfaces design

Maha Fluid Power

Research Topics

PURDUE

Fluid Power

Axial piston machine modeling approach

PURDUE

Fluid Power

Axial piston machine modeling approach

Maha Fluid Power

CCEFP Summit in Honor of Monika Ivantysynova – Dr. Lizhi Shang

EHD test pump Bushing surface temperature distribution measurement during operation

Everth, H. (2003)

CCEFP Summit in Honor of Monika Ivantysynova – Dr. Lizhi Shang

Fluid Power

Maha

RESEARCH CENTER

EHD test pump Bushing surface temperature distribution measurement during operation

From modeling to innovation

Maha Fluid Power

CCEFP Summit in Honor of Monika Ivantysynova – Dr. Lizhi Shang

Introduction Modeling Innovation Scaling Outlook and Conclusions

Scaling

- Lubricating interfaces are difficult to design
- Wide range of demanded size

1. Are lubricating interfaces linearly scalable?

> 2000 times in size

2. Is there an effective scaling rule?

Scalability of elastic deformation

PURDUE

Fluid Power

Scalability of fluid domain heat transfer

Maha

Fluid Power

CCEFP Summit in Honor of Monika Ivantysynova – Dr. Lizhi Shang

Introduction Modeling Innovation Scaling Outlook and Conclusions

Scaling

Are lubricating interfaces linearly scalable?

- No
- Only because that hydrostatic/hydrodynamic pressure distribution, and fluid/solid domain temperature distribution are not scalable.

Shang, L., Ivantysynova, M. (2018)

Fluid Power

Is there an effective scaling rule?

- Yes
- Scaling guide has been proposed based on the findings from the scaling study.
- More effective scaling rules are proposed for three lubricating interfaces.

Shang, L., Ivantysynova, M. (2016,2017,2018)

Outlook

Introduction

- Micro-scale tribological characterization •
 - **Measurement-driven simulation** Ο
 - Novel test rig for small contact patch Ο measurement

Outlook

- Micro-scale tribological characterization
 - \circ Measurement-driven simulation
 - Novel test rig for small contact patch measurement

- Computational efficiency optimization
 - Contribution-based computational power allocation
 - \circ $\,$ Al-aided simulation $\,$

Fluid Power

Maha

RESEARCH CENTER

Introduction

Fluid Power

Maha

• Lubricating interfaces in axial piston machines are difficult to design

Scaling

- Modeling tool helps to understand the essential insight of lubricating interface behavior
- Innovative design and innovative design process are made possible by the modeling tool
- Lubricating interface are not linear scalable due to thermal and hydrostatic/dynamic effects only
- Outlook of the model development is discussed

Thank you!